Received 9 February 2005 Accepted 15 February 2005

Online 26 February 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

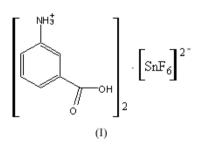
Sofiane Bouacida,* Hocine Merazig, Adel Beghidja and Chahrazed Beghidja

Laboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et de Mesures Physico-Chimiques, Faculté des Sciences, Département de Chimie, Université Mentouri, 25000 Constantin, Algeria

Correspondence e-mail: bouacida_sofiane@yahoo.fr

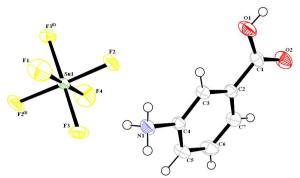
Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.027 wR factor = 0.063 Data-to-parameter ratio = 17.4

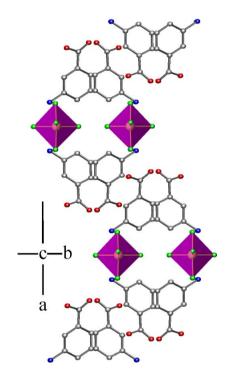

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The title compound, $(C_7H_8NO_2)_2[SnF_6]$, has been prepared from 3-aminobenzoic acid and tin(II) fluoride in hydrofluoric acid. The structure can be described as alternating layers of SnF_6^{2-} and $C_7H_8NO_2^+$ ions along the *a* axis, with the SnF_6^{2-} ions lying on a twofold axis. The cations and anions are linked to each other through strong hydrogen bonds formed by all H atoms covalently bonded to the N and O atoms. This threedimensional complex network of hydrogen bonds reinforces the cohesion of the ionic structure.

Bis(3-carboxyanilinium) hexafluorostannate(IV)

Comment


Organic–inorganic hybrid materials have attracted a great deal of attention over the past few decades (Koutselas *et al.*, 1996; Mitzi *et al.*, 1998; Mayer *et al.*, 1999; Mazeaud *et al.*, 2000) because of their ionic, electrical, magnetic and optical properties (Hill, 1998; Kagan *et al.*, 1999; Raptopoulou *et al.*, 2002).

The structural characteristics of compounds with the formula $(RNH_3)_2[SnX_6]$ (where X is Cl, F, Br or I) have not been investigated extensively. The crystal structures of only four primary *n*-alkylammonium hexachlorostannate(IV) compounds, with chain lengths ranging from one to four, have been reported in the literature to date (Kitahama *et al.*, 1979; Knop *et al.*, 1983; Elleuch *et al.*, 1996). Only one crystal structure of an arylammonium hexachlorostannate(IV) compound has been reported previously (Rademeyer, 2004). In this study, we present a new organic–inorganic hybrid compound of the type $(RNH_3)_2[SnX_6]$, which promises both the superior carrier mobility of inorganic semiconductors and the processability of organic materials.


The title structure, (I), contains anionic sheets of formula $[SnF_6]^{2-}$ parallel to the (100) plane; the distance between two sheets is a/2 and charge compensation is achieved by the incorporation of the protonated amine of 3-aminobenzoic acid. There are two crystallographically equivalent (3-carboxyanilinium) cations in (I). The asymmetric unit contains 15 non-H atoms, with atoms Sn, F1 and F4 lying on a crystallographic twofold axis in special positions $(0, -y, \frac{3}{4})$. The molecular geometry and atom-numbering scheme used are shown in Fig. 1. The benzene ring of the 3-carboxyanilinium

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

ORTEP-3 view (Farrugia, 1997) of the anion and cation of the title compound, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 2 - x, y, $\frac{3}{2} - z$.]

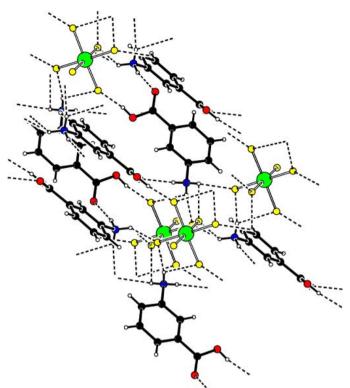


Figure 2

ATOMS diagram (Dowty, 1995) of the layered packing and octahedra in the title compound, viewed down the c axis.

cation and atoms C1 and N1 are coplanar. The cations form zigzag layers parallel to the (101) plane. The Sn atom is six-coordinated and forms a quasi-regular octahedral arrangement. The $[SnF_6]^{2-}$ octahedra in (I) alternate with cationic layers along the *a* axis. The tilted octahedra and layered packing are illustrated in Fig. 2.

In this structure, two types of hydrogen bonds are observed, viz. cation-cation and cation-anion (Fig. 3). The Sn-F bond lengths for the F atoms engaged in strong hydrogen bonding with the ammonium group and cations are linked by C- $H \cdots O$ and $N-H \cdots O$ hydrogen bonds. The carboxylic acid group is not deprotonated and its H atom is involved in the strongest interaction with the hexafluorostannate anion [O1- $H1 \cdots F2 = 2.551$ (2) Å]. Additional hydrogen-bonding parameters are listed in Table 2.

PLUTON view (Spek, 2003) of the ionic stacking, showing the threedimensional network of hydrogen bonds as dashed lines.

Experimental

The title compound was crystallized by slow evaporation of an aqueous solution of 3-aminobenzoic acid, tin(II) fluoride and hydrofluoric acid in a molar ratio of 10:5:1. After five weeks, brown crystals were obtained and were manually separated under a polarizing microscope.

Crystal data

$(C_7H_8NO_2)_2[SnF_6]$	$D_x = 1.958 \text{ Mg m}^{-3}$
$M_r = 508.98$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 8090
a = 22.2660 (5) Å	reflections
b = 10.6580(5) Å	$\theta = 1.9 - 30.0^{\circ}$
c = 7.4920 (5) Å	$\mu = 1.57 \text{ mm}^{-1}$
$\beta = 103.743 \ (5)^{\circ}$	T = 295 (2) K
$V = 1727.03 (15) \text{ Å}^3$	Needle, brown
Z = 4	$0.35 \times 0.07 \times 0.05 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 8090 measured reflections 2517 independent reflections 2291 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.063$ S = 1.102517 reflections 145 parameters $R_{int} = 0.044$ $\theta_{max} = 30.0^{\circ}$ $h = -23 \rightarrow 31$ $k = -14 \rightarrow 12$ $l = -10 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.062P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.66 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.11 \text{ e } \text{Å}^{-3}$

metal-organic papers

 Table 1

 Selected bond lengths (Å).

Sn1-F1	1.927 (2)	O2-C1	1.214 (3)
Sn1-F4	1.934 (2)	O1-C1	1.311 (3)
Sn1-F3	1.9622 (13)	N1-C4	1.466 (3)
Sn1-F2	1.9654 (14)	C2-C1	1.491 (3)

 Table 2

 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 \cdot \cdot \cdot F2^i$	0.82	1.74	2.551 (2)	169
$N1 - H11 \cdots O2^{ii}$	0.89 (3)	2.07 (3)	2.942 (3)	166 (3)
$N1 - H12 \cdot \cdot \cdot F2$	0.83 (3)	2.51 (3)	3.008 (3)	119 (3)
$N1 - H12 \cdot \cdot \cdot F3$	0.83 (3)	1.98 (3)	2.804 (3)	167 (3)
$N1 - H13 \cdot \cdot \cdot F3^{iii}$	0.87 (3)	2.10 (3)	2.834 (3)	141 (3)
$N1-H13\cdots F1^{iv}$	0.87 (3)	2.36 (3)	2.757 (2)	108 (2)
$C3-H3\cdots O2^{ii}$	0.94 (3)	2.55 (3)	3.335 (3)	140 (3)
$C5-H5\cdots F3^{iii}$	0.93 (3)	2.44 (3)	3.094 (3)	128 (2)

Symmetry codes: (i) $\frac{3}{2} - x, \frac{1}{2} - y, 1 - z$; (ii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $2 - x, y, \frac{1}{2} - z$; (iv) 2 - x, 1 - y, 1 - z.

All H atoms were located in difference Fourier maps and refined isotropically (except for carboxy atom H1, which was placed and fixed at its calculated position), with $U_{iso}(H)$ values set at 0.05 Å², using a riding model.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997 PLATON (Spek, 2003) and ATOMS (Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

We thank Hanéne Bensmira from the Faculté des Sciences, Département de Physique, Université Mentouri, 25000 Constantine, Algérie, for his technical assistance.

References

- Burla, M. C., Camalli, M., Carrozzini, B., Casarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Dowty, E. (1995). ATOMS Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Elleuch, H., Kamoun, M., Daoud, A. & Jouini, T. (1996). *Phys. Status Solidi A*, **157**, 3–9.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hill, C. L. (1998). Chem. Rev. 98, 1-2.
- Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. (1999). Science, 286, 945– 947.
- Kitahama, K., Kiriyama, H. & Baba, Y. (1979). Bull. Chem. Soc. Jpn, 52, 324– 328.
- Knop, O., Cameron, T. S., James, M. A. & Falk, M. (1983). Can. J. Chem. 61, 1620–1650.
- Koutselas, I. B., Ducasse, L. & Papavassiliou, G. C. (1996). J. Phys. Condens. Matter, 8, 1217–1227.
- Mayer, C. R., Herson, P. & Thouvenot, R. (1999). Inorg. Chem. 38, 6152–6158.

Mazeaud, A., Dromzee, Y. & Thouvenot, R. (2000). *Inorg. Chem.* **39**, 6152–6158.

- Mitzi, D. B., Liang, K. & Wang, S. (1998). Inorg. Chem. 37, 321-327.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. Teil B, 57, 645–650.
- Rademeyer, M. (2004). Acta Cryst. C60, m55-m56.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.